53=3/4x^2+4=4x^2

Simple and best practice solution for 53=3/4x^2+4=4x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 53=3/4x^2+4=4x^2 equation:



53=3/4x^2+4=4x^2
We move all terms to the left:
53-(3/4x^2+4)=0
Domain of the equation: 4x^2+4)!=0
x∈R
We get rid of parentheses
-3/4x^2-4+53=0
We multiply all the terms by the denominator
-4*4x^2+53*4x^2-3=0
Wy multiply elements
-16x^2+212x^2-3=0
We add all the numbers together, and all the variables
196x^2-3=0
a = 196; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·196·(-3)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{3}}{2*196}=\frac{0-28\sqrt{3}}{392} =-\frac{28\sqrt{3}}{392} =-\frac{\sqrt{3}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{3}}{2*196}=\frac{0+28\sqrt{3}}{392} =\frac{28\sqrt{3}}{392} =\frac{\sqrt{3}}{14} $

See similar equations:

| 18+5n=11n | | 1000=50t+70(t-3) | | 5x+15=4x+35 | | 4m+1=24 | | 7x+7=7+7x | | m*12=180 | | 2(15x^2+65x+20)=0 | | x²-4x+4=25 | | 1000=50t+70t(t-3) | | 1000=50t=70t(t-3) | | 20/x=4/7 | | 3x+6-x=5+2x+1 | | -5/8=5/4(x−3/2) | | 2(x+5)=5x-35 | | 11x-12=7x | | 3t-3=-11 | | x^2=4x=25 | | 6(2g-1)=2g-5 | | 3x(2x+8)=126 | | 648=120t | | 500=125t | | 3n-10=-55 | | (19x)+(24x)=180 | | 37=25+w | | 7x+6=20-7= | | 648=35t+85t | | x+23=75 | | 2x^+7x+5=0 | | x-41=94 | | (4x+90)/5=79 | | 52+x=43 | | 42x-64=200 |

Equations solver categories